单纯的机械组装方案所暴露的缺点越来越多,无法满足动力电池安全不断提升的要求,胶粘剂组装或者配合组装,弥补了机械组装的不足。应用在动力电池组装中的胶黏剂类型包括,结构胶粘剂、导热胶粘剂、焊点保护胶和密封胶等等。胶粘剂对提升动力电池性能和安全性,在多个方面发挥作用。用胶的目的大体分为4类:固定,传热,阻燃,防震,而胶的具体使用形式如垫片、灌封、填充等。
今天从导热胶的基本特性开始。
在热设计中往往需要考虑电池充放电功率与发热量和散热能力之间的平衡问题。锂电池的性能对温度极其敏感,获得适当的工作温度,对充分发挥电池性能,维护合理电池寿命都有重要意义。合理选择热传递介质,不仅要考虑其热传递能力,还要兼顾生产中的工艺、维护操作性、优良的性价比。从原理说起。
导热胶为什么导热
导热胶主要由树脂基体[EP(环氧树脂)、有机硅和PU(聚氨酯)等]和导热填料组成。导热填料的种类、用量、几何形状、粒径、混杂填充和改性等对导热胶之导热性能都有影响。导热胶的导热原理:固体内部导热载体主要为电子、声子(在介电体中,导热是通过晶格的振动来实现的,晶格振动的能量是量子化的,这种晶格振动的量子称为声子)。金属内部存在着大量的自由电子,通过电子间的相互碰撞可传递热量;无机非金属晶体通过排列整齐的晶粒热振动导热,通常用声子的概念来描述;由于非晶体可看成晶粒极细的晶体,故非晶体导热也可用声子的概念进行分析,但其热导率远低于晶体;大多数聚合物是饱和体系,无自由电子存在,因此,在胶粘剂中加入高导热填料是提高其导热性能的主要方法。导热填料分散于树脂基体中,彼此间相互接触,形成导热网络,使热量可沿着“导热网络”迅速传递,从而达到提高胶粘剂热导率的目的。
导热胶一般有哪几种形式
为了适合各种环境和要求,对可能出现的导热问题都有妥善的对策,导热产品有非常多的细分类型,这里不仅限于动力电池系统内的应用场景。
1)相变导热绝缘材料
利用基材的特性,在工作温度中发生相变,从而使材料更加贴合接触表面,同时也获得了超低的热阻,更加顺畅的进行热量传递,可用于填充模组间隙,向模组外部传递热量。
2)导热导电衬垫
高导热能力和低电阻的导热材料,一般在电子电器内部使用,其热传导能力和材料本身具备的柔韧性,很好的贴合了功率器件的散热和安装要求。
3)热传导胶带
用在发热器件与散热器之间的粘接,能同时实现导热、绝缘和固定的功能,能减小设备的体积,是降低设备成本的一项选择。
4)导热绝缘弹性橡胶
良好的导热能力和高等级的耐压,符合目前电子行业对导热材料的需求,是替代硅脂导热膏加云母片的二元散热系统的最佳产品。该类产品安装便捷,利于自动化生产和产品维护,是极具工艺性和实用性的新型材料。
5)柔性导热垫
一种有较厚的导热衬垫,专门为利用缝隙传递热量的设计方案生产,能够填充缝隙,完成发热部位与散热部位的热传递,同时还能起到减震、绝缘、密封等作用,这个就很适合电池模组内部的应用。
6)导热填充剂
也可以作为导热胶使用,不仅具有导热的功效,也是粘接、密封灌封材料。通过对接触面或罐状体的填充,传导发热部件的热量。圆柱电池模组是典型应用了。
7)导热绝缘灌封胶
导热绝缘灌封胶适用于对散热性要求高的电子元器件的灌封。该胶固化后导热性能好,绝缘性优,电气性能优异,粘接性好,表面光泽性好。只是胶用量太大的话,电池包能量密度会被拉低。
影响导热胶性能的因素有哪些
填充型胶粘剂的热导率主要取决于树脂基体、导热填料及两者形成的界面,而导热填料的种类、用量、粒径、几何形状,混杂填充及表面改性等因素均会对胶粘剂的导热性能产生影响。
1)导热填料的种类和用量
填料种类和用量均会对胶粘剂热导率产生影响。当填料较少时,填料被基体树脂完全包裹,绝大多数填料粒子之间未能直接接触;此时,胶粘剂基体成为填料粒子之间的热流障碍,抑制了填料声子的传递,故不论添加何种填料都不能显著提高胶粘剂的热导率。随着填料用量的增加,填料在基体中逐渐形成稳定的导热网络,此时热导率迅速增加,并且填充高热导率填料更有利于提高胶粘剂的热导率。然而,填料的热导率过大也不利于体系热导率的提高。研究表明:当填料与基体树脂的热导率之比超过100时,复合材料热导率的提高并不显著。
上一个研究实例中显示的数据,用以说明填料的量与传热性能的关系。在胶粘剂中添加高导热填料后,复合材料的热导率随填料用量增加而显著提升。研究表明:当w(人造金刚石SD)=20%(相对于环氧树脂EP质量而言)时,热导率为0.335 W(/ m·K);当w(SD)=50%时,热导率为1.07 W(/ m·K),较纯树脂提高了3.5倍;当w(SD)<20%时,体系的热导率缓慢增加;当w(SD)>20%时,体系的热导率迅速上升。这是因为当w(SD)>20%时,颗粒之间开始相互接触,逐渐形成导热链;当w(SD)=50%时,颗粒之间大量接触,形成导热网络,故热导率显著提高。
2) 导热填料的粒径和几何形状
当填料用量相同时,纳米粒子比微米粒子更有利于提高胶粘剂的热导率。纳米粒子的量子效应使晶界数目增加,从而使比热容增大且共价键变成金属键,导热由分子(或晶格)振动变为自由电子传热,故纳米粒子的热导率相对更高;同时,纳米粒子的粒径小、数量多,致使其比表面积较大,在基体中易形成有效的导热网络,故有利于提高胶粘剂的热导率。对微米粒子而言,填料用量相同时大粒径的导热填料比表面积较小,不易被胶粘剂包裹,故彼此连接的概率较大(更易形成有效的导热通路),有利于胶粘剂热导率的提高。一个具体案例,研究表明:当填料用量相同时,含30 nm 的Al2O3 体系之热导率相对最高,含20 μm的Al2O3体系之热导率其次,而含2 μm 的Al2O3 体系之热导率相对最低。这是因为填料用量相同时,纳米粒子的比表面积比微米粒子大,庞大的比表面积使之形成导热网络的概率高于微米粒子;对20、2 μm的Al2O3填充体系而言,较小粒径具有较大的比表面积,与基体接触的相界面更多,从而更容易被基体包裹,无法形成有效的导热网络,故2 μm 的Al2O3 填充体系之热导率相对最低。
当填料用量相同时,不同几何形状的同种填料在基体中形成的导热网络概率不同,较大长径比的导热填料更易形成导热网络,从而更有利于提高基体的热导率。上数字,研究表明:当φ(纳米级银线)=26%(相对于环氧树脂EP胶粘剂体积而言)时达到渗流阈值,热导率从5.66 W(/ m·K)增至10.76 W(/ m·K);当φ(纳米级银棒)=28%、φ(纳米级银块)=38%时达到渗流阈值;长径比越大渗流阈值越小。与银棒和银块相比,长径比大的银线由于其取向性使树脂体系内形成导热网链的概率增加,填料较少时即可达到较高的热导率。
3) 导热填料的混杂填充
与单一粒径的填料填充体系相比,不同粒径大小、同种填料的混杂填充更有利于提高胶粘剂的热导率。同种填料不同形态的混杂填充比单一球形填料填充更易获得高热导率的胶粘剂。不同种类的填料在适当配比时,混杂填充亦优于单一种类填料填充。这归因于上述混杂填充均较易形成紧密堆积结构,而且混杂填充时高长径比粒子易在球形颗粒间起到架桥作用,从而减小了接触热阻,进而使体系具有相对更高的热导率。研究表明:当w(AlN)=80%(相对于硅橡胶质量而言)、粒径分别为15、5 μm时,体系的热导率分别为1.83、1.54 W(/ m·K);在保证AlN总用量不变、两种粒径的颗
粒质量比为1∶1时,体系的热导率为1.85 W(/ m·K)。大小粒径掺杂比单一粒径的热导率高,这是因为大小粒径掺杂时,小粒径的颗粒更易填充至大粒径颗粒的空隙中(致密度增大),使颗粒之间的接触更加紧密,填料在基体内部的排列密度提高(减小了接触热阻),进而增加了体系的热导率。
4) 导热填料的表面改性
无机粒子和树脂基体界面间存在极性差异,致使两者相容性较差,故填料在树脂基体中易聚集成团(不易分散)。另外,无机粒子较大的表面张力使其表面较难被树脂基体所润湿,相界面间存在空隙及缺陷,从而增大了界面热阻。因此,对无机填料粒子表面进行修饰,可改善其分散性、减少界面缺陷、增强界面粘接强度、抑制声子在界面处的散射和增大声子的传播自由程,从而有利于提高体系的热导率。
一个导热胶影响力试验
采用实验和仿真互相校核的方式,针对动力电池不同工况下的放电需求,对比导热胶填充电池间隙和考察系统最高温度和最大温差,
(导热胶参数)
(模组排布)
(不同充放电倍率时电池单体发热功率)
(不同工况温差对比)
案例对比分析了匀速行驶、持续加速和NEDC 3 种工况,电池单体间隙填充导热胶的电池包的温升与温差明显小于间隙为空气的电池包。由此可见导热胶对降低电池包温升与均衡电池包温度场方面有明显作用。进行电池包热设计时,在电池包结构无法做出改变的情况下,可通过在电池单体之间填充导热胶的方式来降低电池包的温升与温差。在可变更电池包结构的情况下,通过改变电池包结构和在电池单体间填充导热胶来使电池包处在合适的工作环境下。电动车在加速行驶时由于加速时间较短,即电池包在进行短时间的大电流放电时,电池的温升与温差上升较小。而高速匀速行驶时由于热的积累与长时间恒流放电,电池包的温升与温差上升明显。
Delta德尔塔仪器是一家专业致力于研发、设计、制造移动电源、充电宝、18650电芯、方形锂电池、单体锂电池、软包电池(模组)、动力电池组(模组)、电动自行车锂电池、电动汽车动力锂电池,电动客车锂电池组等锂电池安全检测设备的高新技术公司。Delta德尔塔仪器可以按照客户的需求进行锂电池重物冲击试验机,锂电池挤压试验台,锂电池针刺试验机,锂电池高空低压试验箱,锂电池温控短路试验箱,锂电池外部短路试验机,锂电池热滥用试验箱,锂电池热冲击试验箱,锂电池跌落试验机,锂电池温度循环试验箱,锂电池高低温冷热冲击试验箱,锂电池燃烧喷射试验装置,锂电池外部火烧试验机,锂电池振动测试系统,锂电池加速度冲击试验台,锂电池碰撞冲击试验台,锂电池翻转试验台,锂电池洗涤试验机,锂电池充放电测试系统,锂电池防爆箱等设备的定制和生产。如需了解设备详细技术方案或销售咨询:
全国服务热线:18128028677张工
总部电话:0769-83110798
公司传真:0769-83117928
销售客服QQ: 1589209019
客服邮箱:18128028677@163.com
工作时间:周一至周六 8:30-20:30
公司地址:东莞市大朗镇新园一路6号创意产业园A栋1楼。
公司网址:www.delta17.cn